CÓ BAO NHIÊU GIÁ TRỊ NGUYÊN CỦA M ĐỂ HÀM SỐ NGHỊCH BIẾN TRÊN KHOẢNG

  -  

Dạng toán tìm số giá trị nguyên của m để hàm số đơn điệu trên khoảng cho trước là một bài toán ít gặp trong chương trình toán lớp 12, tuy nhiên bài toán thường gây nhiều bỡ ngỡ cho gặp lần đầu. Và khi đề thi chuyển dần sang trắc nghiệm, dạng toán này lại được khai thác rất nhiều. Để giải bài toán này chúng ta cũng thực hiện biện luận m theo điều kiện của bài toán, riêng đến phần kết luận thực hiện phép đếm các phần tử.

Bạn đang xem: Có bao nhiêu giá trị nguyên của m để hàm số nghịch biến trên khoảng


Tóm tắt kiến thức về tính đồng biến, nghịch biến

1. Định nghĩa đồng biến, nghịch biến

Cho hàm số y = f(x) xác định trên K , trong đó K là một khoảng, đoạn hoặc nữa khoảng.

a) Hàm số y = f(x) đồng biến trên K nếu mọi x₁, x₂ ∊ K, x₁ f(x₂).


2. Định lí

Cho hàm số y = f(x) có đạo hàm trên K .

a) Nếu f’(x) > 0 với mọi x thuộc K thì hàm số f(x) đồng biến trên K .

b) Nếu f’(x) 0 trên khoảng (a;b) thì hàm số f đồng biến trên đoạn . Nếu hàm số f liên tục trên đoạn và có đạo hàm f’(x) Các ví dụ mẫu và cách giải

Gặp dạng toán này chúng ta giải tương tự như các bài toán tìm m để hàm số đồng biến nghịch biến trên khoảng. Tuy nhiên sau khi có kết quả chúng ta cần phải đếm số giá trị nguyên của m. Do đó các bước giải bài tập cần phải trình bày thật chính xác.

Ví dụ 1. Hỏi có bao nhiêu số nguyên m để hàm số y = (m2 – 1) x3 + (m – 1) x2 – x + 4 nghịch biến trên khoảng (-∞; +∞).

Xem thêm: Tính Chuẩn Ngày Thần Tài Là Ngày Bao Nhiêu 2019, Căn Giờ Mua Vàng Cầu May

A. 0

B. 3

C. 2

D. 1

Lời giải

Chọn C

TH1: m = 1.

Ta có: y = -x + 4 là phương trình của một đường thẳng có hệ số góc âm nên hàm số luôn nghịch biến trên ℝ. Do đó nhận m = 1.

TH2: m = -1.

Ta có: y = -2x2 – x + 4 là phương trình của một đường Parabol nên hàm số không thể nghịch biến trên ℝ. Do đó loại m = -1.

TH3: m ≠ ±1.

Khi đó hàm số nghịch biến trên khoảng (-∞; +∞) ⇔ y’ ≤ 0, ∀ x ∊ ℝ. Dấu “=” chỉ xảy ra ở hữu hạn điểm trên ℝ.

Xem thêm: 100 Kg Bằng Bao Nhiêu Tạ Bằng Bao Nhiêu Kg? ✅ Cách Đổi Tạ Sang Tấn Yến Gram ✅

⇔ 3(m2 – 1) x2 + 2(m – 1) x – 1 ≤ 0, ∀ x ∊ ℝ

*
*
*
*

Vì m ∊ ℤ nên m ∊ {0; 1; 2; 3; 4; 5}

Ví dụ 5. Tìm tập hợp tất cả các giá trị của tham số thực m để hàm số y = ⅓x3 + mx2 + 4x – m đồng biến trên khoảng (-∞; +∞).

A. <-2; 2>